Math, asked by sridevi77, 1 year ago

in the given figure ABCD is a cyclic quadrilateral side CD is produced on both sides such that BC b is equal to 110 degree and a d q is equal to 95 degree find the values of a and b

Attachments:

Answers

Answered by Anonymous
56

Given,

           Quad. ABCD is a cyclic quadrilateral.

            in which,

                           ∠BCP = 110°

                          ∠ADQ = 95°

To find :     m∠DAB and m∠CBA

Solution :

                     ∠AQD +∠ADC = 180°    ⇒ LINEAR PAIR

                 ⇒ ∠ADC = (180 - 95)°

                                 = 85 °

                 ∠BCP+∠BCD = 180°    ⇒ LINEAR PAIR

               ⇒ ∠BCD = (180 - 110)°

                               = 70 °

NOW,

         ∠DAB + ∠ BCD = 180° ⇔ (∵ In a cyclic quadrilateral opposite angles are supplementary.)

⇒ ∠DAB = (180 - 70)°

               = 110°

∠CBA + ∠ ACD = 180° ⇔ (∵ In a cyclic quadrilateral opposite angles are supplementary.)

⇒ ∠CBA= (180 - 95)°

               = 85°

∴ The measure of ∠DAB and ∠CBA is 110° and 80° respectively.

Answered by dhananjaybeniwal001
0

Answer:

Step-by-step explanation:

Given,

Quadrilateral  ABCD  is a cyclic quadrilateral,

In which,

∠BCP=110°

∠ADQ=95°

We have to find, ∠DAB AND ∠CBA

Solution :

                    ∠AQD +∠ADC = 180°    ⇒ LINEAR PAIR

                ⇒ ∠ADC = (180 - 95)°

                                = 85 °

                ∠BCP+∠BCD = 180°    ⇒ LINEAR PAIR

              ⇒ ∠BCD = (180 - 110)°

                              = 70 °

NOW,

        ∠DAB + ∠ BCD = 180° ⇔ (∵ In a cyclic quadrilateral opposite angles are supplementary.)

⇒ ∠DAB = (180 - 70)°

              = 110°

∠CBA + ∠ ACD = 180° ⇔ (∵ In a cyclic quadrilateral opposite angles are supplementary.)

⇒ ∠CBA= (180 - 95)°

              = 85°

∴ The measure of ∠DAB and ∠CBA is 110° and 80° respectively.

Similar questions