In the given figure ,ABCD is a cyclic quadrilateral, whose diagonal intersect at P such that <DBC =60° and <BAC = 40°. Find <DCB.
Answers
Answered by
4
ABCD is a cyclic quadrilateral whose diagonal intersect at E.

∠CBD = ∠CAD (Angles in the same segment are equal)
∠CAD = 70°
∠BAD = ∠BAC + ∠CAD = 30° + 70° = 100°
∠BCD + ∠BAD = 180° (Opposite angles of a cyclic quadrilateral)
∠BCD + 100° = 180°
∠BCD = 80°
In ΔABC,
AB = BC (Given)
∴ ∠BCA = ∠CAB (Angles opposite to equal sides of a triangle are equal)
⇒ ∠BCA = 30°
But ∠BCD = 80°.
⇒ ∠BCA + ∠ACD = 80°
30° + ∠ACD = 80°
⇒ ∠ACD = 50°
⇒ ∠ECD = 50°.

∠CBD = ∠CAD (Angles in the same segment are equal)
∠CAD = 70°
∠BAD = ∠BAC + ∠CAD = 30° + 70° = 100°
∠BCD + ∠BAD = 180° (Opposite angles of a cyclic quadrilateral)
∠BCD + 100° = 180°
∠BCD = 80°
In ΔABC,
AB = BC (Given)
∴ ∠BCA = ∠CAB (Angles opposite to equal sides of a triangle are equal)
⇒ ∠BCA = 30°
But ∠BCD = 80°.
⇒ ∠BCA + ∠ACD = 80°
30° + ∠ACD = 80°
⇒ ∠ACD = 50°
⇒ ∠ECD = 50°.
Similar questions
Computer Science,
8 months ago
English,
8 months ago
English,
1 year ago
Math,
1 year ago
Math,
1 year ago