In the given figure, ABCD is a parallelogram. K is the midpoint of AD.
Prove that HD = DC.
Answers
Answered by
0
Answer:
Step-by-step explanation:
In ||gm ABCD, AC is the diagonal
∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD)
In△ADC, AL is the median
∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD)
Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL)
= 3/4 ar (||gm ABCD)
72 × 4 / 3 = ar (||gm ABCD)
⇒ ar(||gm ABCD) = 96 cm2
∴ ar(△ADC) = 1/2 ar(||gm ABCD)
= 1/2 × 96 = 48 cm2
Attachments:
Similar questions