Math, asked by sakshi7601, 3 months ago

In the given figure, ABCD is a parallelogram. K is the midpoint of AD.

Prove that HD = DC.​

Answers

Answered by devindersaroha43
0

Answer:

Step-by-step explanation:

In ||gm ABCD, AC is the diagonal  

∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD)

In△ADC, AL is the median

∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD)

Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL)

= 3/4 ar (||gm ABCD)  

72 × 4 / 3 = ar (||gm ABCD)  

⇒ ar(||gm ABCD) = 96 cm2  

∴ ar(△ADC) = 1/2 ar(||gm ABCD)  

= 1/2 × 96 = 48 cm2

Attachments:
Similar questions