Math, asked by santhoshyashu08, 2 days ago

In the given figure, ABCD is a rectangle and diagonals intersect at O. If ∠AOB=118∘, find (i) ∠ABO (ii) ∠ADO (iii) ∠OCB​

Attachments:

Answers

Answered by MoodyCloud
130

Answer:

(i) 31°

(ii) 59°

(iii) 59°.

Step-by-step explanation:

Given,

  • ABCD is a rectangle.
  • ∠AOB is 118°.

In ABD and ABC.

⇒AB = AB [Common side]

⇒∠A = ∠B = 90° [All angles of rectangle are right angled]

⇒ AD = BC [Opposite sides of rectangle are equal]

By SAS congruence rule :

ABD ABC .

By CPCT :

→ ∠ABO = ∠OAB

→ ∠ADO = ∠OCB

Now finding angles :

(i) ∠ABO

In AOB :

By angle sum property of triangle :

 \longrightarrow ∠AOB + ∠ABO + ∠OAB = 180°

 \longrightarrow 118° + ∠ABO + ∠ABO = 180° [∠AOB = 118° and ∠ABO = ∠OAB as we proved above]

 \longrightarrow 118° + 2∠ABO = 180°

 \longrightarrow 2∠ABO = 180° - 118°

 \longrightarrow 2∠ABO = 62°

 \longrightarrow ∠ABO = 62°/2

 \longrightarrow ABO = 31°

Thus,

ABO is 31°.

(ii) ∠ADO

In ABD :

By angle sum property :

 \longrightarrow ∠ADO + ∠BAD + ∠ABD = 180°

 \longrightarrow ∠ADO + 90° + 31° = 180° [∠BAD = 90° as it is one of angle of rectangle and ∠ABD or ∠ABO = 31°]

 \longrightarrow ∠ADO + 121° = 180°

 \longrightarrow ∠ADO = 180° - 121°

 \longrightarrow ADO = 59°

Thus,

ADO is 59°.

(iii) ∠OCB

→ ∠OCB = ∠ADO [As we proved above]

→ ∠ADO = 59° [As we have find it in (ii) part]

So,

OCB = 59°

Thus,

OCB is 59°.


MasterDhruva: Nice!!!
amansharma264: Good
MoodyCloud: ᴛʰᵃⁿᵏˢ ᵃ ᵇᵘⁿᶜʰ ᵇᵒᵗʰ ᵒᶠ ʸᵒᵘ!! ❤
Answered by BrainlySparrow
156

Answer:

(i) 31°

(ii) 59°

(iii) 59°.

Step-by-step explanation:

 \tt{Given : }

  • ABCD is a rectangle.
  • ∠AOB is 118°.

Also, In ∆ABD and ∆ABC.

 \implies{ \sf{AB = AB (Common \:  side)}}

\sf{ \implies \:  \angle \: A =  \angle \: B = 90° (All  \: angles \:  of \:  rectangle  \: are  \: right \:  angles)}

 \sf{  \implies{AD = BC  \: (Opposite \:  sides  \: of \:  rectangle  \: are \:  equal)}}

By applying SAS (side angle side) congruence rule :

 \boxed{ \tt{ \triangle \: ABD  \cong \triangle \: ABC }}

By using CPCT (corresponding sides of the corresponding triangle) :

➺ ∠ABO = ∠OAB

➺ ∠ADO = ∠OCB

Now, According to the question let's find angles :

(i) ∠ABO

In ∆AOB :

 \sf{Using  \: angle \:  sum \:  property \:   of  \: triangle :}

★ Angle sum property of a ∆ states that sum of all the angles of a triangle is 180°.

 \dashrightarrow \tt{ \angle \: AOB +  \angle \: ABO +  \angle \: OAB = 180 {}^{ \circ} }

{\tt{ \dashrightarrow \: 118 {}^{ \circ}  +  \angle \: ABO +  \angle \: ABO = 180 {}^{ \circ}   \{\angle \: AOB = 118 {}^{ \circ}  \: and \:   \angle \: ABO = ∠OAB  \: as \:  we  \: have \: proved \:  above \}}}

 {\tt{\dashrightarrow \: 118 {}^{ \circ}  + 2 \angle \: ABO =  {180}^{ \circ} }}

\tt{\dashrightarrow \:  2 \angle \: ABO = 180^{ \circ} - 118^{ \circ} }

 \tt{ \dashrightarrow \: 2 \angle \: ABO =  {62}^{ \circ} }

 \tt{ \dashrightarrow \:  \angle \: ABO = \cancel{\dfrac{62 {}^{ \circ} }{2 {}^{}}}}

 \tt{\dashrightarrow{  \angle \: ABO = 31^{ \circ} }}

Hence,

➸ ∠ABO is 31°.

(ii) ∠ADO

In ∆ABD :

 \sf{By \:  using \:  angle \:  sum \:  property :}

 \bf{\longmapsto \: \angle \: ADO +  \angle \: BAD +  \angle \: ABD = 180 ^{ \circ} }

 \bf{ \longmapsto \: \angle \: ADO +  {90}^{ \circ}  +  {31}^{ \circ}  =  {180}^{ \circ} }

  • We took ∠BAD = 90° as measure of all angles of rectangle is 90° and ∠ABD or ∠ABO = 31°.

 \bf{ \longmapsto \: \angle \: ADO +  {121}^{ \circ}  =  {180}^{ \circ} }

 \bf{ \longmapsto \: \angle \: ADO =  {180}^{ \circ}  -  {121}^{ \circ} }

 \bf{ \longmapsto \: \angle \: ADO =   \pink{{59}^{ \circ}}}

Hence,

➸ ∠ADO is 59°.

(iii) ∠OCB

∠OCB = ∠ADO [As we have already proved above]

∠ADO = 59° [As we already found it in (ii) part]

 \mathfrak{ \red{So,}}

➸ ∠OCB = 59°

Hence,

➺ ∠OCB is 59°.

Similar questions