Math, asked by AnanyaBaalveer, 4 days ago

In the given figure, ABCD is a square. A line segment DX cuts the side BCat X and the diagonal AC at O such that COD 115º and OXC-

THE VALUE OF x is​

Attachments:

Answers

Answered by dhrubkumar48
3

Step-by-step explanation:

(b): ZOCX=45° /COD+/COX =180° COX=180°-/COD= 180°-115-65° In AOCX LOC X+/COX+LOXC=180° ⇒ 45° +65°+/OXC=180° ⇒ LOXC= 180°-110-70⇒x=70°

Answered by llVanshuBaball
1

\huge\bold\red{☆Answer☆}

Since DX is a line segment, then

∠COD+∠COX=180 {Angle sum property}

⟹∠COX=180−105=75      −(1)

Since ABCD is a square and AC is a diagonal , 

therefore all the angles in a square is 90∘each and AC bisects the angle in half. {property}

⟹∠ACB(∠OCX)=290=45∘    −(2)

In traingle COX

⟹∠OCX+∠COX+x=180, { sum of angles in a triangle is 180∘)

⟹x=180−(45+75) {using eq 1 and 2}

⟹x=60∘

Similar questions