in the given figure ABCD is a trapezium in इन व्हिच AE इक्वल टू 3 सेंटीमीटर EB इक्वल टू 5 सेंटीमीटर BC इज इक्वल टू 5 सेंटीमीटर एंड AE is वन एंड हॉफ टाइम एस लोंग एस DC
Find,
1. द लेंथ ऑफ डीसी
2.द रेश्यो ऑफ AECD to that of abcd
Answers
hi bro here is your ANS..
For better understanding of the solution see the attached figure of the problem :
Given : m∠ABC = 90°, AD = 16 cm, AC = 41 cm and BC = 40 cm
To find : Area of trapezium ABCD
Solution : Since, m∠ABC is 90°
So, AB is the height of the trapezium ABCD
Now, to find AB : By using Pythagoras theorem in ΔABC
AC² = AB² + BC²
41² = AB² + 40²
⇒ AB² = 41² - 40²
⇒ AB = 9 cm
Now, Area of the trapezium is given by the formula :
$$\begin{lgathered}Area = \frac{1}{2}\times Height\times \text{(Sum of parallel sides)}\\\\\implies Area = \frac{1}{2}\times AB\times (AD+BC)\\\\\implies Area = \frac{1}{2}\times 9\times (40+16)\\\\\implies Area = \frac{1}{2}\times 9\times 56\\\\\implies Area =9\times 28\\\\\bf Area = 252\thinspace cm^2\end{lgathered}$$
Hence, The area of the given trapezium ABCD = 252 cm²
please mark me brainliest please...