In the given figure, ABCDE is a pentagon inscribed in a circle. If AB=BC=CD,angle BCD=110° and angleBAE=120°, find
1)angleABC,
2)angleCDE,
3)angle AED,
4)angleEAD
Answers
Answered by
11
according to the figure,
if we join BD.
In triangle BCD,
BC=BD
____________________________________________________________
<CBD = <CDB = x Isosceles triangle
<BCD=110°,
<BCD+ <CBD + <CDB = 180,
x+x+110=180
2x=70
x=35
Hence,
arc BC = arc CD = arc AB = 2<CBD = 70°
angle BAE=120°
arc BCDE= 2x120° = 240°
arc BC + arc CD + arc DE = 240
70+70+ arc DE = 240
arc DE = 100
<BCD = 2 (Arc DE + Arc EA +Arc AB)
110*2 =2(100+70+Arc EA)
Arc EA=50
<ABC = 1/2 * (arc CD + arc DE arc EA)
<ABC = 1/2* (70+100+50)
<ABC = 110
and similarly you can find for remaining angles.....
Attachments:
Answered by
3
Answer:
108
Step-by-step explanation:
(2n-4)x90=(2x5-4) 90=540
x = 540/5=lo8 degree
OR
External angle sum=360
360/5=72 degree
internal angle x=l80-72=108 degree
Similar questions
Computer Science,
7 months ago
Math,
7 months ago
Math,
1 year ago
English,
1 year ago
World Languages,
1 year ago