Math, asked by chukkichandrakv, 7 months ago

In the given figure ac=ae,ab=ad and angle bad =angle eac. show that bc=de​

Attachments:

Answers

Answered by Anonymous
30

Given:-

  • AC = AE & AB = AD

  • \sf{\angle{BAD} = \angle{EAC}}

To Show:-

  • BC = DE

Congurency Used:-

  • S - A - S → Side angle Side.

Now,

\sf{\angle{BAD} = \angle{EAC}}

\sf{ \angle{ACD}\:is\:Common}

  • Adding it on both the Sides

\sf{\angle{BAD} +\angle{ACD} = \angle{EAC} +\angle{ACD} }

\sf{ \angle{BAC} = \angle{EAD}}...... 1

Therefore,

In BAC and EAD

\sf{ AC = AE } ( Given )

\sf{ AB = AD } ( Given )

\sf{ \angle{BAC} = \angle{ EAD}} ( From 1. )

Hence, BAC EAD by S - A - S Congurency Criteria.

Therefore,

BC = DE by C.P.C.T

Answered by EthicalElite
56

Given:-

◍ AC = AE

◍ AB = AD

◍ ∠BAD = ∠EAC

________________________________

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

To prove:-

◍ BC = DE

________________________________ ⠀⠀ ⠀ ⠀⠀ ⠀

Solution:-

As, ∠BAD=∠EAC

➝ ∠BAD+∠ACD = ∠EAC+∠ACD (∠ACD is common)

➝ ∠BAC=∠EAD -(i)

______________________

In ∆BAC and ∆DAE

AC=AE [Given]

AB=AD [Given]

∠BAC=∠DAE [from (i)]

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

By S-A-S congruency criteria

∆BAC ≈ ∆DAE

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

By C.P.C.T

➝ BC = DE

{\fcolorbox{white}{lightgreen}{{\footnotesize{{$\color{white}{\checkmark} \: $ }}}{\huge{Hence, \: proved}}}}

Similar questions