in the given figure AC is a straight line find (1) ×(2) ∆ AOB
Attachments:
Answers
Answered by
1
Answer:
AOB and ∠COB are linear pairs
∴ ∠AOB + ∠COB = 180°
⇒ x + 25° + 3x + 15° = 180°
⇒ 4x + 40° = 180°
⇒ 4x = 180° – 40° = 140°
(i) ⇒ x = 140°/4 = 35°
Hence, x = 35°
(ii) ∠AOB = x + 25° = 35° + 25° = 60°
(iii) ∠BOC = 3x + 15° = 3 × 35° + 15°
= 105° + 15° = 120°
Answered by
1
Answer:
Step-by-step explanation:
x+25+3x+15 =180 {straight angle}
4x+40=180
4x=180-40
4x=140
x=140/4
x=35
AOB = x+25= 35+25=60
1/2 of AOB = 1/2 of 60 = 30 degrees
Similar questions