Math, asked by kalyanidhake36, 9 months ago

in the given figure , AC is the diameter of the circle with centre O. If <ADE =30° ;< DAC= 35° and <CAB = 40°.Find (i) <ACD
(ii) < ACB
(iii)<DAE ​

Attachments:

Answers

Answered by XxMissPaglixX
29

{\huge{\mathtt{\red{AnSwEr:-}}}}

&lt;body bgcolor="cyan"&gt;&lt;font color="black"&gt;

Solution :

In triangle ACB,

<ACB  =  90 (Angle in a semicircle)

Sum of opposite angles in a quadrilateral  =  180

<ADC + <ABC  =  180

120 + <ABC  =  180

<ABC  =  60

<ACB + <CAB + <ABC  =  180

x + 90 + 60  =  180

x + 150  =  180

x  =  180 - 150

x  =  30

ʜᴏᴘᴇ ɪᴛ ɪs ʜᴇʟᴘғᴜʟ

ᴛʜᴀɴᴋ ʏᴏᴜ

Answered by adityachoudhary2956
74

&lt;body bgcolor=pink&gt;&lt;font color=black&gt;

\huge\underline\bold \red {♡AnswEr♡}</p><p>

In triangle ACB,

<ACB = 90 (Angle in a semicircle)

Sum of opposite angles in a quadrilateral = 180

<ADC + <ABC = 180

120 + <ABC = 180

<ABC = 60

<ACB + <CAB + <ABC = 180

x + 90 + 60 = 180

x + 150 = 180

x = 180 - 150

x = 30

ɪ ʜᴏᴘᴇ ɪᴛ's ʜᴇʟᴘɪɴɢ ᴜ :)

◦•●◉✿thanks✿◉●•◦

Similar questions