Math, asked by jiya8758, 3 months ago

In the given figure, AD||AB, AD || BC. If angle BDC = 30° and x:y = 11:19, then find angle DCE​

Attachments:

Answers

Answered by SweetLily
11

Given

  • AD||AB
  • AD || BC
  • BDC = 30°
  • x:y = 11:19

To Find

angle DCE

Topic

Lines and Angles

Solution

‣ Since AB || DC then BD is the transversal.

 \sf{ \to Therefore \:  \angle ABD= \angle CDB}

 \sf{ \to  \red{\angle ABD= 30°}}

»Now Assume ∆ABD

»Apply angle sum property

 \sf{⟹\angle BAD+ \angle ABD+\angle ADB = 180 \degree}

 \sf{⟹90°+30°+X°= 180°}

 \sf{⟹120°+ X°= 180°}

 \sf{⟹X°= 180°-120°}

 \sf{⟹ \green{X°= 60 \degree}}

 \sf{x°=\angle DBC= 60° \:  \:  \purple{ [alternate \:  interior  \: angles]}}

»Now Assume ∆DCB

Important property- An exterior angle of a triangle is equal to the sum of the two opposite interior angles.

 \sf{\angle BDC+\ angle DBC= \angle DCE \:  \:  \:  \orange{ [exterior  \: angle \:  property]}}

 \sf{⟹30°+ 60°=  \angle DCE}

\bold{⟹ \pink{90° =  \angle DCE}}

-------------------------------------------------

Answered by errnaveen1092
1

Answer:

60° Answer :;;;;;;;&-+&+8

Similar questions