Math, asked by rakshithraj, 1 year ago

in the given figure, AD = AB and AE bisects angle A.Prove that:i) BE = ED ii)angleABD >angle BCA

Attachments:

Answers

Answered by mysticd
4

 \underline{\pink{ Given :}}

 In \: the \: given \: figure , AD = AB \:and

 AE \: bisects \: \angle A

 \underline { \blue{ Solution : }}

 i) In \: \triangle ABE \:and \: \triangle ADE

 AB = AD \: ( given )

 \angle {BAE} = \angle {DAE}

 AE = AE \: ( Common \: side )

 \therefore \triangle ABE \cong \triangle ADE

 \blue { ( S.A.S \: congruence \: rule ) }

 BE = ED \: ( C.P.C.T )

 ii) In \: \triangle BCD, \: CD \: extended \: to \:A

 \angle {BDA } \gt \angle {BCA}

 \blue {( \because Exterior \:angle \: at \: D \:is}

 \blue { is \: greater \:than \: interior\: opposite}

 \blue { angle ) }

\implies  \angle {ABD } \gt \angle {BCA}

 \blue{ ( \because \angle {BDA} = \angle {ABD }) }

•••♪

Similar questions