Math, asked by TECHRISHI008, 5 months ago

In the given figure , ∠ADB = ∠BCA and

∠ABD = ∠ BAC. Prove that -

( a ) ΔABD ≅ ΔBAC ( b) AD = BC​

Attachments:

Answers

Answered by hp658198
1

Answer:

Given:- In the given figure,

ADB = BCA

ABD = BAC

(a) To Prove :- ∆ABD ~ ∆BAC

Proof :- In ∆ABD and ∆BAC,

ADB = BCA (given)

ABD = BAC (given)

AB = AB (common)

Therefore, ∆ABD ~ ∆BAC ----- 1

Hence proved.

(b) Since, ∆ABD ~ ∆BAC

By CPCT,

AD = BC

Hence proved.

mark me as a brainlist.

Answered by Agamsain
37

Given :-

  • ∠ADB = ∠BCA
  • ∠ABD = ∠BAC

To Prove OR Show :-

  • ΔABD ≅ ΔBAC
  • AD = BC

Proof OR Explanation :-

_____________________

1. \: \bf \bigstar \: In \: \triangle ABD \: and \: \triangle BAC \: \bigstar

\rm : \: \longrightarrow \angle ADB = \angle BCA \qquad \bold{[Given]}

\rm : \: \longrightarrow \angle ABD = \angle BAC \qquad \bold{[Given]}

\rm : \: \longrightarrow AB = BA \qquad \qquad \; \; \; \: \bold{[Common]}

\red { \underline { \boxed { \rm \therefore \:  \bold {\triangle \: ABD \cong \triangle \: BAC} }}}

_____________________

2. \: \bf \bigstar \: To \: Prove \: AD = BC \: \bigstar

\rm : \: \longrightarrow \angle ADB = \angle BCA \qquad \bold{[Given]}

\rm : \: \longrightarrow \angle ABD = \angle BAC \qquad \bold{[Given]}

\rm : \: \longrightarrow AB = BA \qquad \qquad \; \; \; \: \bold{[Common]}

\rm Hence, \triangle \: ABD \cong \triangle BAC

\red { \underline { \boxed { \rm \therefore \: AD = BC }}} \qquad \bold{[By \: C.P.C.T]}

_____________________

So, In this way we can prove them.

Hope This Helps You.

Similar questions