Math, asked by arunsrivastava669, 5 hours ago

In the given figure, AE perpendicular BC, <B = 60°, <C = 30°, AB = 8 cm and BC = 24 cm, find:
(1) BE
(2) AC​

Attachments:

Answers

Answered by Anonymous
52

Trigonometric equation

The following are the tips and concept that can be use to find the solution:

  • Having a basic knowledge of Trigonometric ratios and Angles.
  • Trigonometric ratios are sin, cos, tan, cot, sec, cosec.
  • The standard angles of these trigonometric ratios are 0°, 30°, 45°, 60° and 90°.
  • Relationship between sides and T ratios

Analyse the values of important angles for all the six trigonometric ratios shown in the table given below:

\boxed{\begin{array}{c |c|c|c|c|c} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}

Relationship between sides and T ratios:

  • sin(θ) = Height/Hypotenuse
  • cos(θ) = Base/Hypotenuse
  • tan(θ) = Height/Base
  • cot(θ) = Base/Height
  • sec(θ) = Hypotenuse/Base
  • cosec(θ) = Hypotenuse/Height

Let's head to the Question now:

We are given that, In right ∆ABC, AE perpendicular to BC, ∠B = 60°, ∠C = 30°, AB = 8cm and BC = 24cm. With this information, we are asked to find out the value of (1) BE and (2) AC.

1. In right right ∆AEB, we have;

\implies \sin( {60}^{\circ}) = \dfrac{AE}{AB} \\  \\  \implies \frac{ \sqrt{3} }{2} = \dfrac{AE}{8} \\  \\ \implies \cancel{8} \sqrt{3} = \cancel{2}AE \\  \\\implies AE = 4 \sqrt{3}

Now, by using Pythagoras theorem;

\implies (BE)^2 = (AB)^2 - (AE)^2 \\  \\ \implies BE = \sqrt{(AB)^2 - (AE)^2} \\  \\ \implies BE = \sqrt{ {(8)}^{2} - { \big(4 \sqrt{3} \big)}^{2} } \\  \\ \implies BE = \sqrt{64 - 48} \\  \\ \implies BE = \sqrt{16} \\  \\ \implies \boxed{\bf{BE =4}}

Now finding the value of EC;

\implies EC = BC - BE \\ \\ \implies EC = 24 - 4 \\ \\ \implies EC = 20

2. In right ∆AEC and using Pythagoras theorem, we have;

\implies (AC)^2 = (AE)^2 - (EC)^2 \\  \\\implies AC =  \sqrt{(AE)^2 - (EC)^2} \\  \\ \implies AC =  \sqrt{ \big(4 \sqrt{3} \big) ^{2} +  {(20)}^{2} } \\  \\ \implies AC =  \sqrt{48 + 400} \\  \\ \implies AC = \sqrt{448} \\  \\ \implies \boxed{\bf{AC =8 \sqrt{7}}}

Hence, the value of BE and AC are 4cm and 8√7cm respectively.

Answered by Rudranil420
63

Answer:

Question :-

✯ In the given figure, AE perpendicular BC, <B = 60°, <C = 30°, AB = 8 cm and BC = 24 cm, find :

☯ (1) BE

☯ (2) AC

Given :

✯ In the given figure, AE perpendicular BC, <B = 60°, <C = 30°, AB = 8 cm and BC = 24 cm.

Find Out :-

✯ Find :

☯ (1) BE

☯ (2) AC

Solution :-

In case of AE :-

\sf \longrightarrow \sin{60}^{\circ} = \dfrac{AE}{AB}

\sf \longrightarrow \dfrac{\sqrt{3}}{2} = \dfrac{AE}{8}

\sf \longrightarrow {\small{\bold{\purple{\underline{AE = 4 \sqrt{3}\: cm}}}}}

✭ In case of BE :-

\sf \longrightarrow (BE)^2 = (AB)^2 - (AE)^2

\sf \longrightarrow (AB)^2 - (AE)^2

\sf \longrightarrow {(8)}^{2} - (4 \sqrt{3})^{2}

\sf \longrightarrow 64 - 48

\sf \longrightarrow 16

\longrightarrow \sf {\small{\bold{\purple{\underline{BE =4\: cm}}}}}

✭ In case of EC :-

\sf \longrightarrow EC = BC - BE

\sf  \longrightarrow EC = 24 - 4

\longrightarrow \sf {\small{\bold{\purple{\underline{EC = 20\: cm}}}}}

✭ In case of AC :

\sf \longrightarrow (AC)^2 = (AE)^2 - (EC)^2

\sf \longrightarrow (AE)^2 - (EC)^2

\sf \longrightarrow (4 \sqrt{3} ) ^{2} +  {(20)}^{2}

\sf \longrightarrow48 + 20

\sf \longrightarrow448

\longrightarrow \sf {\small{\bold{\purple{\underline{AC =8 \sqrt{7}\: cm}}}}}

Henceforth, the value of BE and AC are 4 cm and 8√7 cm respectively.

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

\red{ \boxed{\sf{Trigonometric\: Ratios\: Table :-}}}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3} }{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp; 1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm  \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty\:  \\ \\ \rm cot A &amp; \rm  \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered} \end{gathered}

\bigstar\:  { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Perpendicular/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Base/Hypotenuse }}}

 { \green{ \bf{tan θ = Perpendicular/Base  }}}

 { \green{ \bf{sec θ = Hypotenuse/Base   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Perpendicular }}}

 { \green{ \bf{  cot θ = Base/Perpendicular }}}

\bigstar { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = \dfrac{1}{sin θ} }}}

 { \green{ \bf{ sec θ = \dfrac{1}{cos θ}  }}}

 { \green{ \bf{  cot θ = \dfrac{1}{tan θ} }}}

 { \green{ \bf{sin θ = \dfrac{1}{cosec θ}   }}}

 { \green{ \bf{ cos θ = \dfrac{1}{sec θ}  }}}

 { \green{ \bf{   tan θ = \dfrac{1}{cot θ}}}}

\bigstar { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin^2θ + cos^2θ = 1 }}}

 { \green{ \bf{  sec^2θ - tan^2θ = 1 }}}

 { \green{ \bf{ cosec^2θ - cot^2θ = 1  }}}

Attachments:
Similar questions