In the given figure angle OAB equal to 75 degree, angle OBA equal to 55 degree and angle OCD equal to 100 degree.Then angle ODC equal to?
Answers
Given :- In the given figure, ∠OAB is equal to 75°, ∠OBA is equal to 55° and ∠OCD is equal to 100°. Then ∠ODC is equal to ?
Solution :-
In ∆OAB, we have,
→ ∠OAB + ∠OBA + ∠AOB = 180° (By Angle sum Property.) → 75° + 55°+ ∠AOB = 180°
→ 130° + ∠AOB = 180°
→ ∠AOB = 180° - 130°
→ ∠AOB = 50°
now, as we can see that,
→ ∠COD = ∠AOB = 50° (vertically opposite Angles.)
In ∆OCD, we have,
→ ∠COD + ∠OCD + ∠ODC = 180° (By Angle sum Property.)
→ 50° + 100° + ∠ODC = 180°
→ 150° + ∠ODC = 180°
→ ∠ODC = 180° - 150°
→ ∠ODC = 30° (Ans.)
Learn more :-
In ABC, AD is angle bisector,
angle BAC = 111 and AB+BD=AC find the value of angle ACB=?
https://brainly.in/question/16655884
☆ Given :-
- ∠OAB = 75°
- ∠OBA = 55°
- ∠OCD = 100°
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ To find :-
- ∠ODC
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Solution :-
☆ In Δ OAB,
We know, ∠OAB + ∠OBA + ∠AOB = 180° …(i)
[since, sum of all the angles of a triangle is 180°]
On putting ∠OAB = 75° and ∠OBA = 55° in eq. (i), we get
⇒ 75° + 55° + ∠AOB = 180°
⇒ 130° + ∠AOB = 180°
⇒ ∠AOB = 180° -130°
⇒ ∠AOB = 50°
─━─━─━─━─━─━─━─━─━─━─━─━─
Now, ∠AOB = ∠COD [vertically opposite angles]
∴ ∠COD = 50°
In Δ COD,
⇒ ∠COD + ∠OCD + ∠ODC = 180° … (ii)
[since, sum of all the angles of a triangle is 180°]
On putting ∠OCD = 100° and ∠COD = 50° in eq. (ii), we get
⇒ 100° + 50° + ∠ODC = 180°
⇒ 150° + ∠ODC = 180°
⇒ ∠ODC = 180° - 150°
∴ ∠ODC = 30°
Hence,∠ODC = 30°
─━─━─━─━─━─━─━─━─━─━─━─━─