Math, asked by unnairji, 9 months ago

In the given figure angle OAB equal to 75 degree, angle OBA equal to 55 degree and angle OCD equal to 100 degree.Then angle ODC equal to?

Answers

Answered by RvChaudharY50
5

Given :- In the given figure, ∠OAB is equal to 75°, ∠OBA is equal to 55° and ∠OCD is equal to 100°. Then ∠ODC is equal to ?

Solution :-

In ∆OAB, we have,

→ ∠OAB + ∠OBA + ∠AOB = 180° (By Angle sum Property.) → 75° + 55°+ ∠AOB = 180°

→ 130° + ∠AOB = 180°

→ ∠AOB = 180° - 130°

→ ∠AOB = 50°

now, as we can see that,

→ ∠COD = ∠AOB = 50° (vertically opposite Angles.)

In ∆OCD, we have,

→ ∠COD + ∠OCD + ∠ODC = 180° (By Angle sum Property.)

→ 50° + 100° + ∠ODC = 180°

→ 150° + ∠ODC = 180°

→ ∠ODC = 180° - 150°

→ ∠ODC = 30° (Ans.)

Learn more :-

In ABC, AD is angle bisector,

angle BAC = 111 and AB+BD=AC find the value of angle ACB=?

https://brainly.in/question/16655884

Attachments:
Answered by mathdude500
3

Given :-

  • ∠OAB = 75°
  • ∠OBA = 55°
  • ∠OCD = 100°

─━─━─━─━─━─━─━─━─━─━─━─━─

To find :-

  • ∠ODC

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution :-

\large\underline\red{\bold{❥︎Step :- 1 }}

☆ In Δ OAB, 

We know, ∠OAB + ∠OBA + ∠AOB = 180°    …(i)

[since, sum of all the angles of a triangle is 180°]

On putting ∠OAB = 75° and ∠OBA = 55° in eq. (i), we get

⇒ 75° + 55° + ∠AOB = 180°

⇒ 130° + ∠AOB = 180° 

⇒ ∠AOB = 180° -130° 

⇒ ∠AOB = 50°

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{❥︎Step :- 2 }}

Now, ∠AOB  = ∠COD [vertically opposite angles]

 ∴ ∠COD = 50°

In Δ COD, 

⇒ ∠COD + ∠OCD + ∠ODC = 180°   … (ii)

[since, sum of all the angles of a triangle is 180°]

On putting ∠OCD = 100° and ∠COD = 50° in eq. (ii), we get

⇒ 100° + 50° + ∠ODC = 180° 

⇒ 150° + ∠ODC = 180°

⇒  ∠ODC = 180° - 150°

 ∴  ∠ODC = 30°

Hence,∠ODC = 30°

─━─━─━─━─━─━─━─━─━─━─━─━─

Attachments:
Similar questions