In the given figure, angle X = 62°, angle XYZ = 54°. If YO and ZO are the bisectors of angle XYZ and angle XZY respectively of triangle XYZ, find angle OZY and angle YOZ.
Attachments:
Answers
Answered by
6
Answer:
Answer
As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,
∠X + ∠XYZ + ∠XZY = 180º
62º + 54º + ∠XZY = 180º
∠XZY = 180º − 116º
∠XZY = 64º
∠OZY = 32º (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ == 27º
Using angle sum property for ΔOYZ, we obtain
∠OYZ + ∠YOZ + ∠OZY = 180º
27º + ∠YOZ + 32º = 180º
∠YOZ = 180º − 59º
∠YOZ = 121º
Answered by
4
Answer:
angle OYZ = 27 degree
angle OZY=33 degree (angle sum property of big triangle and angle bisector of small triangle)
hence by angle sum property
angle YOZ = 180-33+27
=180-60
=120 degree
Step-by-step explanation:
hope it helps
pls mark brainliest
Similar questions