In the given figure, anglePQT = angleTRS and angleTQS = angleTRP. If angleRPQ =180º and angleRSQ = 120°, then
find the value of angleRTQ.
Attachments:
Answers
Answered by
2
Answer:
answers is 150°
Step-by-step explanation:
In triangle PQR
angle P + angle Q + angle R =180°
180°+Q+R= 180°
Q+R=0°
let angle TQS and angle TRP be y
and angle TQP and angle TRS be z
now when angle Q and angle R are equal to 0
hence Q=R
y+z+angle SQR=y+z+angleSRQ
HENCE angle SQR=angle SRQ
In ∆SQR
angle QSR+ angle SQR+ angle SRQ=180°
120°+angleSQR+angleSRQ=180°
2 angleSRQ=60°
angleSRQ=30°
Now anglePQR=0°
y+z+30°=0°
y+z=-30°
In ∆ TQR
angleQTR+angleTQR+angleTRQ=180°
angleQTR+(y+30°)+(z+30°)=180°
angleQTR+y+z+60°=180°
angleQTR+(-30°)=120°
angleQTR=120°+30°
angleQTR=150°
please mark me the brainlist
Similar questions