Math, asked by kanishkaran, 2 months ago

In the given figure, ∠AOB,∠BOC and ∠COD.

Attachments:

Answers

Answered by ajay8949
2

  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ in \: given \: figure}

 \sf{∠AOB + ∠BOC + ∠COD = 180 \degree}

 \:  \:  \:  \:  \:  \:  \sf{y + y - 29 + y + 17 = 180 \degree}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \: \sf {3y - 12 = 180 \degree}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{3y = 192 \degree}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\sf{y = 64 \degree}}

 \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \boxed{\red {\sf{∠AOB = y = 64 \degree}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \pink { \sf{∠BOC = y - 29   }}  \\{  \pink{\sf{\:  \:  \:  \:  \:  \:  \:  \: =  > 64 - 29 =  > 35 \degree}}}

 \:  \:  \:  \:  \:  \:  \:  \:   \blue { \sf{∠COD = y - 17   }}  \\{  \blue{\sf{\:  \:  \:  \:  \:  \:  \:  \: =  > 64 - 17 =  > 47 \degree}}}

Similar questions