Math, asked by charanvejella, 10 months ago

In the given figure, AP=12 cm and PB=16 cm. Taking the value of pi as 3.14, the area of the shaded region is :

Attachments:

Answers

Answered by madmaxaditya2004
2

Step-by-step explanation:

first by Pythagoras

we can find AB

( because APB is a right angled triangle

because <APB is 90° because angle made from diameter of circle is always 90° .)

(AP)^2 + ( PB )^2 = (AB)^2

now put all values

(12)^2 + (16)^2 = (AB)^2

144 + 256 = (AB)^2

400 = (AB)^2

√400 = AB

20cm = AB

AB is diameter so AB/2 is radius .

AB/2 = 20/2 = 10cm

so now find area of both figures

area of semi - circle = Πr^2 /2 .....(Π is pie )

area of semi - circle = 3.14 * 10^2 /2

area of semi - circle = 314/2 = 107cm^2

now area of triangle = 1/2 * base * height

now put values

area of triangle = 1/2 * 12 * 16

area = 12 * 8

area = 96cm^2

now subtract the area of triangle from area of semi - circle to get the area of shaded region

107 cm^2 - 96cm^2 = 11cm^2

Answered by Anonymous
29

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:shaded\:region}}}=532{cm}^{2}

\frak{ Given}\begin{cases}\textsf{Base\:of\: triangle\:=12\:cm}\\\textsf{Height\:of\: triangle\:=16\:cm}\end{cases}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\underline{\boxed{\sf Area\:of\:shaded\:region\:=\:Area\:of\:semicircle\:-\:Area\:of\: triangle}}

\underline{\bigstar\:\:\textsf{From Pythagoras theorem :}}

In Right triangle ABP,

(AB)=  \sqrt{  {(AP)}^{2}  +  {(PB)}^{2}  }  \\ (AB) =  \sqrt{ {16}^{2} +   {12}^{2} }  \\ (AB) =  \sqrt{256 + 144}  =  \sqrt{400}  \\ (AB) = 20cm

\underline{\bigstar\:\:\textsf{Area of triangle :}}=\frac{1}{2}×base×height

\implies\frac{1}{2}×12×16

\implies96{cm}^{2}

\underline{\bigstar\:\:\textsf{Area of semicircle :}}= \frac{1}{2} \pi {r}^{2}

Radius of semi circle = \frac{20}{2} = 10 cm

\implies\frac{1}{2}×3.14×{{10}^{2}}

\implies\frac{1}{2}×3.14×100

\implies{157{cm}^{2}}

Now, area of shaded region = 157 - 96 = 61{cm}^{2}

\therefore\underline{\textsf{Area\:of\:shaded region is}}\bold{\underline{{61{cm}^{2}}}}.

Attachments:
Similar questions