Math, asked by tamannaaaa7, 5 months ago

In the given figure AP and PB are tangents drawn to the circle with center O. If angle AOB = 115 then find the value of angle APB

Attachments:

Answers

Answered by divyanshpatidar51
1

Answer:

see below

Step-by-step explanation:

Join OB.

We know that the radius and tangent are perpendicular at their point of contact.

∴  ∠OBP=∠OAP=90  

o

 

Now, In a quadrilateral AOBP

⇒  ∠AOB+∠OBP+∠APB+∠OAP=360  

o

               [ Sum of four angles of a quadrilateral is 360  

o

. ]

⇒  ∠AOB+90  

o

+60  

o

+90  

o

=360  

o

 

⇒  240  

o

+∠AOB=360  

o

 

⇒  ∠AOB=120  

o

.

Since OA and OB are the radius of a circle then, △AOB is an isosceles triangle.

⇒  ∠AOB+∠OAB+∠OBA=180  

o

 

⇒  120  

o

+2∠OAB=180  

o

                [ Since, ∠OAB=∠OBA ]

⇒  2∠OAB=60  

o

 

∴  ∠OAB=30  

o

 

Similar questions