in the given figure BE is parallel to CD , angle abc is equal to 120 degrees , angle C is equal to 80 degrees , angle CDE is equal to 110 degrees and BC is equal to CD . find angle BAE , angle CBE and angle BDE.
Answers
Answer:
Angle BAE=50°, CBE=100° and BDE=50°
Answer :-
- ∠BAE = 50°
- ∠CBE = 100°
- ∠BDE = 60°
Given :-
- ∠ABC = 120°
- ∠C = 80°
- ∠CDE = 110°
To Find :-
- ∠BAE = ?
- ∠CBE = ?
- ∠BDE = ?
Solution :-
✯ Let's first find ∠BAE.
◆ In quadrilateral ABCD,
⇒ ∠A + ∠B + ∠C + ∠D = 360° [Sum of all the angles of quadrilateral is 360°]
⇒ ∠BAE + ∠ABC + ∠C + ∠CDE = 360°
⇒ ∠BAE + 120° + 80° + 110° = 360°
⇒ ∠BAE + 310° = 360°
⇒ ∠BAE = 360° - 310°
⇒ ∠BAE = 50°
∴ ∠BAE = 50°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
✯ Now let's find ∠CBE.
◆ In △BCD,
⇒ ∠DBC + ∠C + ∠CDB = 180° [Sum of all the angles of triangle is 180°]
⇒ 2∠DBC +∠C = 180° [△BCD is an isosceles triangle so ∠DBC = ∠CDB]
⇒ 2∠DBC + 80° = 180°
⇒ 2∠DBC = 180° - 80°
⇒ 2∠DBC = 100°
⇒ ∠DBC =
⇒ ∠DBC = 50°
∴ ∠DBC = 50°
∴ ∠CDB = 50°
◆ Now we are given that DE || DC
⇒ ∠DEB + ∠CDE = 180° [Sum of co-interior angles is 180°]
⇒ ∠DEB + 110° = 180°
⇒ ∠DEB = 180° - 110°
⇒ ∠DEB = 70°
∴ ∠DEB = 70°
◆ In quadrilateral BCDE,
⇒ ∠B + ∠C + ∠D + ∠E = 360° [Sum of all the angles of quadrilateral is 360°]
⇒ ∠CBE+ ∠C + ∠CDE + ∠DEB = 360°
⇒ ∠CBE + 80° + 110° + 70° = 360°
⇒ ∠CBE + 260° = 360°
⇒ ∠CBE = 360° - 260°
⇒ ∠CBE = 100°
∴ ∠CBE = 100°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
✯ Now let's find ∠BDE.
◆ ∠BDE + ∠CDB = ∠CDE
⇒ ∠BDE + 50° = 110°
⇒ ∠BDE = 110° - 50°
⇒ ∠BDE = 60°
∴ ∠BDE = 60°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬