Math, asked by adduanji, 5 months ago

in the given figure below x id five times y. find the value of x, y, z​

Attachments:

Answers

Answered by ImperialGladiator
3

Answer:

x = 100°

y = 20°

z = 120°

Step-by-step explanation:

In the triangle ABC :

  • ∠A = x \degree
  • ∠B = y \degree
  • ∠C = 60 \degree

Step 1 :

Here, ∠A = x \degree is five times ∠B = y \degree

So we can say that,

∠A = x \degree = 5y \degree

Using the angle sum property of :

→ ∠A + ∠B + ∠C

We have,

  • ∠A = 5y \degree
  • ∠B = y \degree
  • ∠C = 60 \degree

So,

 \implies 5y \degree + y \degree + 60 \degree = 180 \degree

\implies 6y \degree + 60 \degree = 180\degree

\implies 6y \degree = 180\degree - 60\degree

\implies 6y = 120\degree

\implies y \degree = \dfrac{120}{6}

\implies y \degree = 20 \degree

Therefore, the value of y is 20°

And also, x  = 5y = 5(20) = 100 \degree

Step 2 :

Finding the value of z :

We know that,

∠ACD + ∠ACB = 180°

  • Linear pair.

We have,

  • ∠ACD = z
  • ∠ACB = 60 \degree

So,

\implies z + 60° = 180°

\implies z = 180° - 60°

\implies z = 120°

Therefore, the value of z = 120°

Note behind :

  • Linear pair : Two Adjacent angles in a line forms 180° is known as the linear pair.
  • Angle sum property of a : Any traingle's all angles sums to 180° is called as Angle sum property of a triangle.
Answered by anshu24497
2

 \huge \mathfrak{ \color{pink}{An}} \mathfrak{ \color{plum}{sw}} \mathfrak{ \color{violet}{er}}

 \sf➪ x = 100° \\  \sf➪ y = 20 ° \\  \sf➪ z = 120°

\large \mathfrak{ \color{deepskyblue}{Step}}{\mathfrak{\blue{-by-}}} {\mathfrak{ \color{royalblue}{step}}} {\mathfrak{ \color{blue}{ \: Explanation}}}

In the triangle ABC :

  • ∠A = x°
  • ∠B = y°
  • ∠C = 60°

 \large {\textsf{ \textbf{ \color{mediumaquamarine}{Step 1 :}}}}

Here, 

∠A = x° is five times ∠B = y°

So we can say that,

∠A = x° = 5y°

Using the angle sum property of △ :

→ ∠A + ∠B + ∠C

We have,

  • ∠ A = 5y°
  • ∠ B = y°
  • ∠ C = 60°

So,

\implies\sf{5y° + y° + 60° = 180°}

\implies\sf{6y° + 60° = 180°}

\implies\sf{6y° = 180° − 60°}

\implies\sf{6y = 120°}

\implies\sf {y°= \dfrac{120}{6}}

\implies\sf {y° = 20 \degree}

Therefore, the value of y is 20°

And also, x = 5y = 5(20) = 100°

 \large {\textsf{ \textbf{ \color{mediumaquamarine}{Step 2 :}}}}

Finding the value of z :

We know that,

∠ACD + ∠ACB = 180° Linear pair.

We have,

  • ∠ACD = zz
  • ∠ACB = 60°

So,

\implies\sf{z + 60° = 180°}

\implies\sf{z = 180° - 60°}

\implies\sf{z = 120°}

Therefore, the value of z = 120°

Similar questions