Math, asked by drskmandal1002, 2 months ago

in the given figure calculate the area of quard. ABCD​

Attachments:

Answers

Answered by ChDeepanshuNagar
0

The area of quadrilateral ABCD is 114 cm^{2}.

Explanation:

∆ABD and ∆BDC are right-angled triangles.

So,  In ∆BDC

      BC^{2} + BD^{2} = CD^{2}

                 BD^{2} = CD^{2} - BC^{2}

                 BD^{2} = (17)^{2} - (8)^{2}

                 BD^{2} = 289 - 64

                 BD^{2} = 225

                  = 15 cm

and, In ∆ABD

      AD^{2} + AB^{2} = BD^{2}

                 AB^{2} = BD^{2} - AD^{2}

                 AB^{2} = (15)^{2} - (9)^{2}

                 AB^{2} = 225 - 81

                 AB^{2} = 144

                 AB = 12 cm

Now,  

Area of ∆ ABD

ar(∆ ABD) = 1/2(base X height)

ar(∆ ABD) = 1/2(AB X AD)

ar(∆ ABD) = 1/2(12 X 9)

ar(∆ ABD) = 1/2(108)

ar(∆ ABD) = 54 cm^{2}

Area of ∆ BDC

ar(∆ BDC) = 1/2(base X height)

ar(∆ BDC) = 1/2(BC X BD)

ar(∆ BDC) = 1/2(8 X 15)

ar(∆ BDC) = 1/2(120)

ar(∆ BDC) = 60 cm^{2}

ar(quadrilateral ABCD) = ar(∆ABD) + ar(∆BDC)

ar(quadrilateral ABCD) = 54 cm^{2} + 60

ar(quadrilateral ABCD) = 114 cm^{2}

∴ The area of quadrilateral ABCD is 114 cm^{2}

(Hope it helps you!)

Similar questions