Math, asked by akki2429p0bm7a, 1 year ago

In the given figure, D and E trisect BC. Prove that 8AE^2=3AC^2+5AD^2

Attachments:

Answers

Answered by ak3057955
15

Answer:

Step-by-step explanation:

ABC is a triangle right angled at B, and D and E are points of trisection of BC.

Let BD = DE = EC = x

Then BE = 2x and BC = 3x

In Δ ABD,

AD² = AB² + BD²

AD² = AB² + x²

In Δ ABE,

AE² = AB² + BE²

AE² = AB² + (2x)²

AE² = AB² + 4x²

In Δ ABC,

AC² = AB² + BC²  

AC² = AB + (3x)²

AC² = AB² + 9x²

Now,

3AC² + 5AD² = 3(AB² + 9x²) + 5(AB² + x²) 

8AB² + 32x²

8(AB² + 4x²)

= 8AE²

⇒ 8AE² = 3AC² + 5AD²

Hence proved

Similar questions