In the given figure, D and E trisect BC. Prove that 8AE2=3AC2+5AD2
Answers
Given:
∠B = 90°
D and E trisect BC
To Prove:
8AE² = 3AC² + 5AD²
Proof:
D and E trisect BC,
∴ BD = DE = EC = x
In Δ ABC
By using Pythagoras Theorem,
AC² = AB² + BC²
AC² = AB² + [BD + DE + EC]²
AC² = AB² + [x + x + x]² (given)
AC² = AB² + [3x]²
AC² = AB² + 9x²
Multiply the above equation by 3.
3AC² = 3AB² + 27x² → Eq1
In Δ ABE
By using Pythagoras Theorem,
AE² = AB² + BE²
AE² = AB² + [BD + DE]²
AE² = AB² + [x + x]² (given)
AE² = AB² + [2x]²
AE² = AB² + 4x²
Multiply the above equation by 8.
8AE² = 8AB² + 32x² → Eq2
In Δ ABD
By using Pythagoras Theorem,
AD² = AB² + BD²
AD² = AB² + x² (given)
Multiply the above equation by 5.
5AD² = 5AB² + 5x² → Eq3
Adding Equation 1 and Equation 3
3AC² + 5AD² = 3AB² + 5AB² + 27x² + 5x²
3AC² + 5AD² = 8AB² + 32x²
Apply Equation 2
∴ 3AC² + 5AD² = 8AE²
8AE² = 3AC² + 5AD²
Hence Proved.
Answer:
HOPE IT HELPS U...
Step-by-step explanation:
ABC is a triangle right angled at B, and D and E are points of trisection of BC.
Let BD = DE = EC = x
Then BE = 2x and BC = 3x
In Δ ABD,
AD² = AB² + BD²
AD² = AB² + x²
In Δ ABE,
AE² = AB² + BE²
AE² = AB² + (2x)²
AE² = AB² + 4x²
In Δ ABC,
AC² = AB² + BC²
AC² = AB + (3x)²
AC² = AB² + 9x²
Now,
3AC² + 5AD² = 3(AB² + 9x²) + 5(AB² + x²)
8AB² + 32x²
8(AB² + 4x²)
= 8AE²
⇒ 8AE² = 3AC² + 5AD²
Hence proved.