Math, asked by fadil, 1 year ago

in the given figure D E F G is a square and angle BAC is equal to 90 degree prove that square equals to BD into AC

Attachments:

Answers

Answered by depanshu
9
Given ; ABC is a triangle in which ∠ BAC = 90° and DEFG is a square.
Proof in : (1) In Δ AGF and Δ DBG,
∠ AGF = ∠ GBD    (Corresponding angles)
∠ GAF = ∠ BDG = 90° each
So, Δ AGF ~ Δ DBG (Proved By AA similarity)
(2) In Δ AGF and Δ EFC,
∠ AFG = ∠ FCE   (Corresponding angles)
∠ GAF = ∠ CEF = 90° each
So, Δ AGF ~ Δ EFC  (Proved by AA similarity)
(3) In Δ DBG and Δ EFC,
∠ DBG = ∠ ECF = (Corresponding angles)
∠ BDG = ∠ CEF = 90° each
So, Δ DBG ~ Δ EFC  (Proved by AA similarity)
(4) In Δ AGF and Δ DBG,
∠ AGF = ∠ GBD (Corresponding angles)  
∠ GAF = ∠ BDG = 90° each
∴ Δ AGF ~ ΔDBG .....(1)
Similarly, Δ AFG ~ Δ ECF (AA similarity) ....(2)
From (1) and (2), we get 
Δ DBG ~ Δ ECF
⇒ BD/EF = BG/FC = DG/EC
BD/EF = DG/EC
EF × DG = BD × EC ....(3)
Also DEFG is a square ⇒ DE = EF = FG = DG ....(4)
From (3) and (4), we get 
DE² = BD × EC
Hence proved.

fadil: angle GBD is not 90
fadil: because bac=90
depanshu: maine gbd 90 likha hi nhi
depanshu: See properly
Similar questions