In the given figure, D is the mid-point of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that :
(i) b² = p² + ax + a²/4
(ii) c² = p² - ax + a²/4
(iii) b² + c² = 2p² + a²/2
Answers
SOLUTION :
Given : D is the mid-point of side BC and AE ⊥ BC. BC = a, AC = b, AB = c, ED = x, AD = p and AE = h.
BD = DC = a/2 (D is the mid-point of side BC)...........(1)
(i) In ∆ AED
AD² = AE² + ED²
[By using pythagoras theorem]
p² = h² + x² …………….(2)
In ∆ AEC,
AC² = AE² + EC²
[By using pythagoras theorem]
AC² = AE² +( ED + DC)²
b² = h² + ED² + DC² + 2ED× DC
[(a+b)² = a²+b² +2ab]
b² = h² +x²+ (a/2)² + 2×x×a/2
b² = h² + x²+ a²/4+ xa
b² = p²+ a²/4+ xa ……………..(3)
[From eq 2]
(ii) BD = BE + ED
BE = BD - ED
BE = a/2 - x
[From eq 1]
In ∆AEB, by pythagoras theorem
AB² = BE² + AE²
[By using pythagoras theorem]
c² = (a/2 - x)² + h²
c² = [(a/2)² +x² - 2× a/2 × x ) + h²]
[(a- b)² = a²+b² - 2ab]
c² = (a²/4 +x² - ax) + h²
c² = h² + x² - ax + a²/4
c² = p² - ax + a²/4 …………..(4)
[From eq 2]
(iii) On Adding eq 3 & 4
b² + c² = p²+ a²/4+ xa + p² - ax + a²/4
b² + c² = p² + p² + a²/4 + a²/4
b² + c² = 2p² + 2(a²/4)
b² + c² = 2p² + a²/2
HOPE THIS ANSWER WILL HELP YOU...
Please refer to the attachment above...
Thank you ...