Math, asked by anjalikashyap2315, 7 months ago


In the given figure, DE || BC and DE: BC = 3:5.
Calculate the ratio of the areas of AADE and
the trapezium BCED.​

Answers

Answered by Uriyella
14

Given :–

  • DE || BC.
  • DE : BC = 3 : 5.

To Find :–

  • The ratio of the areas of ∆ADE and the trapezium BCED.

Solution :–

Given that,

DE || BC

Therefore,

 \angle ADE  =  \angle ABC

It means,

 \angle AED  =  \angle ACB

By AA similarity theorem,

• ∆ADE∼∆ABC

Therefore,

  \dfrac{ar( \triangle ABC)}{ar ( \triangle ADE)}  =  \dfrac{ {BC}^{2} }{ {DE}^{2} }

Given,

  • DE : BC = 3 : 5

Now, put the given values,

 \dfrac{ar( \triangle ABC)}{ar ( \triangle ADE)}  =  \dfrac{ {(5)}^{2} }{ {(3)}^{2} }

Now, subtracting 1 both sides (L.H.S. and R.H.S.),

  \dfrac{ar( \triangle ABC)}{ar ( \triangle ADE)}  - 1 =  \dfrac{ {(5)}^{2} }{ {(3)}^{2} }  - 1

 \dfrac{ar( \triangle ABC)}{ar ( \triangle ADE)} -  \dfrac{1}{1}   =  \dfrac{25}{9}  -  \dfrac{1}{1}

 \dfrac{ar( \triangle ABC) -ar( \triangle ADE)}{ar ( \triangle ADE)}  =  \dfrac{25 - 9 }{ 9}

 \dfrac{ar(BCED)}{ar ( \triangle ADE)}  =  \dfrac{16 }{ 9}

OR,

\dfrac{ar ( \triangle ADE)}{ar(BCED)}  =  \dfrac{9 }{16}

Hence,

The ratio of the areas of ∆ADE and the trapezium BCED is 9 : 16.

Attachments:
Similar questions