In the given figure, DREAM is a regular pentagon. The bisector of
angleMDR meets AE at Q. If the bisector of angleAER meets QD at P,
find angleEPQ
Answers
Answered by
0
Answer:
What would you like to ask?
8th
Maths
Understanding Quadrilaterals
Angle Sum Property
ABCDE is regular pentagon. ...
MATHS
avatar
Asked on December 30, 2019 by
Gurram Sagani
ABCDE is regular pentagon. The bisector of ∠A of the pentagon meets the side CD in M. Then the measure ∠AMC is
MEDIUM
Share
Study later
ANSWER
Each interior angle of a regular pentagon =
n
2n−4
×90
=
5
2×5−4
×90
0
=6×18=108
0
∴∠BAM=
2
1
(108
0
)=54
0
In the quadrilateral ABCM,
∠BAM+∠ABC+∠BCM+∠AMC=360
0
⇒54
0
+108
0
+108
0
+∠AMC=360
0
⇒∠AMC=90
0
Similar questions