Math, asked by AnkushRana9254, 9 months ago

In the given figure, equilateral ΔABD and ΔACE are drawn on the sides of a ΔABC.
Prove that CD = BE.

Answers

Answered by prince5132
23

DIAGRAM :-

\setlength{\unitlength}{25} \begin{picture}(10, 5) \put(1,1){\line(1, 0){5}}\put(1,1){\line( - 1, 1){2.5}}\put(6,1){\line( + 1,  + 1){2.5}}\put( - 1.5,3.5){\line(1, 0){10}} \put(1,1){\line(1, 1){2.5}}\put(6,1){\line( - 1, 1){2.5}}\put(1,1){\line(3,  1){1}}\put(2.2,1.5){\line(3, 1){1}}\put(3.8, 2){\line(3, 1){1}} \put(5, 2.4){\line(3, 1){1}} \put(6.5, 2.8){\line(3, 1){1}}  \put(7.8, 3.2){\line(3, 1){0.7}} \put(6, 1){\line( - 3, 1){1}} \put(4.6, 1.5){\line( - 3, 1){1}} \put(3.1, 2){\line( - 3, 1){1}} \put(1.8, 2.5){\line(  - 3, 1){1}} \put(0.5, 2.85){\line( - 3, 1){1}} \put( - 0.9, 3.3){\line( - 3, 1){0.5}}\multiput(4.,2.5 )( - 0.1,  0.1){2}{\line(3,1 ){0.8}}\multiput(7,2.5 )(0.1,0.1 ){2}{\line(1, - 2 ){0.35}}\multiput(5.5,3.25 )(0.1, 0.){2}{\line(0, 1){0.5}}\multiput(2,1.85 )( - 0.5,1.5 ){2}{\line(  0,1 ){0.5}}\put(0, 1.5){\line(1,1 ){0.5}}\put(1,0.5 ){ $ \bf B $ }\put(6,0.5 ){ $ \bf C $ }\put(3, 3.8){ $ \bf A $ }\put(8, 3.8){ $ \bf E $ }\put( - 2,3.8 ){ $ \bf \: D$ }\put(7,1){\boxed{$ \bf @prince5132 $}}\end{picture}

GIVEN :-

  • Equilateral triangle ABD and ACE are drawn on the sides of triangle ABC.

TO PROVE :-

  • CD = BE

SOLUTION :-

▪︎To prove CD = BE we have to prove first \angle CAD = \angle BAE

Now, \angle CAD = \angle CAB + \angle BAD

=> \angle CAD = \angle CAB + 60° [ \angle BAD = 60° ]

=> \angle CAD = \angle CAB + CAE [ CAE = 60° ]

=> \angle CAD = \angle BAE [ \angle CAB + \angle CAE = \angle BAE

Hence proved

Now in triangle CAD and triangle BAE ,

=> BA = AD

In \angle CAD = \angle BAE

=> AC = AE

Hence triangle CAD ≅ triangle BAE .

so, CD = BE [CPCT]

HENCE PROVED

Answered by sunayanchowdhury3613
0

Answer:

GIVEN :-

Equilateral triangle ABD and ACE are drawn on the sides of triangle ABC.

TO PROVE :-

CD = BE

SOLUTION :-

▪︎To prove CD = BE we have to prove first \angle∠ CAD = \angle∠ BAE

Now, \angle∠ CAD = \angle∠ CAB + \angle∠ BAD

=> \angle∠ CAD = \angle∠ CAB + 60° [ \angle∠ BAD = 60° ]

=> \angle∠ CAD = \angle∠ CAB + CAE [ CAE = 60° ]

=> \angle∠ CAD = \angle∠ BAE [ \angle∠ CAB + \angle∠ CAE = \angle∠ BAE

Hence proved

Now in triangle CAD and triangle BAE ,

=> BA = AD

In \angle∠ CAD = \angle∠ BAE

=> AC = AE

Hence triangle CAD ≅ triangle BAE .

so, CD = BE [CPCT]

HENCE PROVED

Similar questions