in the given figure find the angle measure x.
Answers
Answer:
x = 105°
Step-by-step explanation:
∠GCD = 90°
∠HDA = 50°
∠EAB = 115°
∠CBF = x°
∠BCD = ∠BCD + ∠GCD = 180° [ Linear pair ( LP ) ]
= ∠BCD + 90° = 180°
= ∠BCD = 180° - 90°
= ∠BCD = 90°
∠CDA = ∠CDA + ∠HDA = 180° [ Linear pair ( LP ) ]
= ∠CDA + 50° = 180°
= ∠CDA = 180° - 50°
= ∠CDA = 130°
∠DAB = ∠DAB + ∠EAB = 180°
= ∠DAB + 115° = 180°
= ∠DAB = 180° - 115°
= ∠DAB = 65°
∠ABC = ∠BCD + ∠CDA + ∠DAB + ∠ABC = 360° ( Angle sum property of a
quadrilateral )
∠ABC = 90° + 130° + 65° + ∠ABC = 360°
= 285° + ∠ABC = 360°
= ∠ABC = 360 - 285
= ∠ABC = 75°
∠ABC + x = 180° [ Linear pair ( LP ) ]
75° + x = 180°
x = 180 - 75
x = 105°
∴ x = 105°