In the given figure, find the area of the field shown alongside. All
dimensions are in metres.
C
R
20
Q
40
E
30
Р
20
B
30120
Answers
Step-by-step explanation:
The area of pentagonal field
ABCDE=A(△ABC)+A(△AFE)+A[trapeziumEFDH+A(△DHC)]
Area of △ABC=
2
1
×base×height
=
2
1
×AC×BG[AC=AF+FG+GH+HC=50+50+40+30=170]
=
2
1
×170×50
=85×50
=4250m
2
Area of △AFE=
2
1
×base×height
=
2
1
×FA×EF
=
2
1
×50×30
=50×15
=750m
2
Area of trapezium EFDH=
2
1
×(sum of parallel sides)×height
=
2
1
×(EF+DH)×HF[HF+HG+GF=50+40=90]
=
2
1
×(30+20)×90
=
2
1
×50×90
=50×45
=2250m
2
Area of △DHC=
2
1
×base×height
=
2
1
×DH×CH
=
2
1
×20×30
=10×30
=300m
2
Therefore,
Area of pentagonal field =A(△ABC)+A(△AFE)+A[trapeziumEFDH+A(△DHC)]
=4250+750+2250+300
=7550m
2
The area of pentagonal field is 7550m
2