Math, asked by StormGirl, 5 months ago

In the given figure, find the length of AC
AB=10cm,BC=17cm,BD=8cm
Step by Step

Attachments:

Answers

Answered by TheDeadlyWasp
24

consider triangle ABD

given :- BD=8cm

BA=10cm

using Pythagoras thereom

AD^2=AB^2-BD^2

AD^2= 10^2-8^2

AD^2=100-64

AD^2=36

AD=√36

AD=6cm

consider triangle BDC

given :- BC =17cm

BD= 8cm

using Pythagoras thereom

DC^2=BC^2-BD^2

DC^2=17^2-8^2

DC^2=289 - 64

DC^2= 225

DC=√225

DC=15cm

therefore AC = AD+DC

=6+15

= 21

Answered by DynamicCrystal
10

AnsweR :

 \purple { \boxed{ \sf AC = 21cm}}

Step by Step Explanation :

 \sf \:by \:  using \: pythagoras  \: theorem.

  \green{\boxed{ \sf \pink{  {a}^{2}  +  {b}^{2}  =  {c}^{2}} }}

Find AD :

 \sf \:  {BD}^{2}  +  {AD}^{2}  =  {AB}^{2}  \\  \\  \sf \: AB = 10cm \\   \sf \: BD = 8cm \\  \\  \sf {(8)}^{2}  +  {AD}^{2}  =  {(10)}^{2}  \\  \sf = 64 +  {AD}^{2}  = 100 \\  \sf =  {AD}^{2}  = 100 - 64 \\  \sf {AD}^{2}  = 36 \\  \sf \: AD =  \sqrt{36}  \\  \sf \: AD = 6cm

________________________

Find DC :

 \sf \:  {BD}^{2}  +  {DC}^{2}  =  {BC}^{2}  \\  \\  \sf \: BD = 8cm \\  \sf \: BC = 17cm \\  \\  \sf \:  {(8)}^{2}  +  {DC}^{2}   =  {(17)}^{2}  \\  \sf = 64 +{DC}^{2}  =  289 \\  \sf {DC}^{2}  = 289 - 64 \\  \sf {DC}^{2}  = 225 \\  \sf \: DC =  \sqrt{225}  \\  \sf \: DC = 15cm

________________________

Find AC :

  \sf \: AD + DC = AC \\  \sf6cm + 15cm = AC  \\  \sf \: AC = 21cm

Similar questions