Math, asked by vaibhavrd18gmailcom, 9 months ago

In the given figure, find the value of x:​

Attachments:

Answers

Answered by sethrollins13
35

Given :

  • ∠EBD = x+3°
  • ∠DBC = x+20°
  • ∠CBF = x+7°

To Find :

  • Value of x.

Solution :

As we know that the sum of angles made on one line is 180°.So,

\longmapsto\tt{\angle{EBD}+\angle{DBC}+\angle{CBF}=180\degree}

\longmapsto\tt{x+3+x+20+x+7=180\degree}

\longmapsto\tt{3x+30=180\degree}

\longmapsto\tt{3x=180\degree-30\degree}

\longmapsto\tt{3x=150\degree}

\longmapsto\tt{x=\cancel\dfrac{150}{3}}

\longmapsto\tt\bold{x=50}

So , The value of x is 50...

_______________________

VERIFICATION :

\longmapsto\tt{x+3+x+20+x+7=180\degree}

\longmapsto\tt{50+3+50+20+50+7=180\degree}

\longmapsto\tt\bold{180\degree=180\degree}

HENCE VERIFIED

Attachments:
Answered by shikha2019
0

Step-by-step explanation:

∠EBD+∠DBC+∠CBF=180°

\longmapsto\tt{x+3+x+20+x+7=180\degree}⟼x+3+x+20+x+7=180°

\longmapsto\tt{3x+30=180\degree}⟼3x+30=180°

\longmapsto\tt{3x=180\degree-30\degree}⟼3x=180°−30°

\longmapsto\tt{3x=150\degree}⟼3x=150°

\longmapsto\tt{x=\cancel\dfrac{150}{3}}⟼x=

3

150

\longmapsto\tt\bold{x=50}⟼x=50

So , The value of x is 50.....

Similar questions