In the given figure, find the value of x:
Attachments:
Answers
Answered by
1
Answer:
angle ebd+dbc+cbf=180
=(x+3) +(x+20) +(x+7) =180
=x+3+x+20+x+7=180
3x+30=180
3x=180-30
3x=150
x=150/3
x=50
value of angle ebd= (x+3) =50+3=53
dbc=(x+20) =50+20=70
cbf= (x+7) =50+7=57
l hope this is helpful for u
Answered by
1
__________________________
★ Sᴏʟᴜᴛɪᴏɴ :-
From the given figure ,
- There is a straight line EBF
- With angles ∠DBE = (x + 3)° , ∠DBC = (x + 20)° & ∠CBF = (x + 7)°
Using straight line property ,
Straight line property :- Sum of all angles on a straight line is always equal to 180°
Similarly ,
Sum of all angles on the given straight line EBF equal to 180°
∠DBE + ∠DBC + ∠CBF = 180°
Substituting the values of the given angles,
⇒ (x + 3)° + (x + 20)° + (x + 7)° = 180°
⇒ 3x° + 30° = 180°
Taking common
⇒ 3(x + 10)° = 180°
⇒ (x + 10)° = 180° ÷ 3
⇒ (x + 10)° = 60°
⇒ x° = 60° + 10°
⇒ x° = 70°
Hence , x° = 70°
__________________________
Similar questions