Math, asked by tusharikarajput8, 2 months ago

In the given figure find the value of x...​

Attachments:

Answers

Answered by suhani2412
0

Step-by-step explanation:

60+5x+3x=180

60+8x=180

8x=120

x=15

hope it helps you

if yes please mark as brainliest

thank you

Answered by ItzBrainlyLords
3

Given :

Angles = 60°

  • 5x°

  • 3x°

Let angles :

  • a = 60°

  • b = 5x°

  • c = 3x°

Solving

  \\  \large  \sf \mapsto \:  \angle \: a +  \angle \: b +  \angle \: c = 180 \degree \\  \:  \:  \:  \: ( \: linear \:  \: pair \: ) \\

Angles along a straight line = 180°

 \\ \large \tt \implies \: 60 \degree + 5x + 3x = 180 \degree \\  \\  \large \tt \implies \: 8x = 180 \degree - 60 \degree \\  \\  \large \tt \implies \: x =   \frac{120 \degree}{8}  \\  \\  \large \sf \underline{ \boxed{ \sf \: x = 15 \degree}} \\

______________________________________

Value of x = 15 °

Angles :

  • a = 60 °

  • b = 5(15°) = 75°

  • c = 3(15°) = 45°

Check :

  \\  \large  \sf \mapsto \:  \angle \: a +  \angle \: b +  \angle \: c = 180 \degree \\  \:  \:  \:  \: ( \: linear \:  \: pair \: ) \\

 \\ \large \tt \implies \: 60 \degree + 5x + 3x = 180 \degree \\  \\  \large \tt \implies \: 60 \degree + 45 \degree + 75 \degree = 180 \degree \\  \\  \large \tt \implies \: 180 \degree =   {180 \degree} \\  \\  \large \sf \:  \mapsto \: l.h.s = r.h.s \\

Hence Proved

Similar questions