Math, asked by suhasgowtham74, 19 days ago

In the given figure, find x. А 5.x - 60° 2x + 40° 3x - 80% B с​

Answers

Answered by kpranithfriend12
1

Answer:

MARK ME AS BRAIN LIST

Step-by-step explanation:

Given that,

∠A = (5x - 60°)

∠B = (2x + 40°)

∠C = (3x - 80°)

By angle sum property of a Triangle we know that,

∠A + ∠B + ∠C = 180° .

So,

→ ∠A + ∠B + ∠C = 180° .

Putting values of given angles we get,

→ (5x - 60°) + (2x + 40°) + (3x - 80°) = 180°

→ (5x + 2x + 3x) + (40° - 60° - 80°) = 180°

→ 10x - 100° = 180°

→ 10x = 180° + 100°

→ 10x = 280°

dividing both sides by 10,

→ x = 28° (Ans.)

Hence, Value of x will be 28° .

Answered by mahakulkarpooja615
0

Answer:

x=46.66^{0}

Step-by-step explanation:

Given : Three measures of angles are given,

          ∠ A = x-60^{0}

           ∠ B = 2X+40^{0}

           ∠ C = 3x-80^{0}

To find : The value of x

Solution :

  • Three measures of angles are given,

          ∠ A = x-60^{0}

           ∠ B = 2X+40^{0}

           ∠ C = 3x-80^{0}

  • We know the property of a triangle that the sum of measures of three angles of a triangle is 180^{0}.

      ∴  ∠ A +  ∠ B + ∠ C = 180^{0}

      ∴    x-60^{0}+2x+40^{0}+3x-80^{0}=180^{0}

  • On solving, we get

         ∴  6x-100^{0} =180^{0}

                  ∴  6x = 180^{0}+100^{0}

                  ∴  6x = 280^{0}

                    ∴  x = \frac{280}{6}

                     ∴ x = 46.66^{0}

  • ∴ The value of x=46.66^{0}          

Similar questions