In the given figure (i), OP, OQ, OR and OS are four rays. I
ZPOQ + ZQOR + ZSOR + ZPOS = 360°
Answers
Step-by-step explanation:
Step-by-step explanation:
Given that
OP, OQ, OR and OS are four rays
You need to produce any of the ray OP, OQ, OR and OS backwards to a point in the figure. Let us produce ray OQ backwards to a point
T so that TOQ is a line
Ray OP stands on the TOQ
∠TOP + ∠POQ = 180° [Linear pair] ………...(1)
Similarly,
∠TOS + ∠SOQ = 180° [Linear pair]
∠TOS + (∠SOR + ∠OQR) = 180° ………. (2)
Adding eq (1) and (2), we obtain :
∠TOP + ∠POQ + ∠TOS + ∠SOR + ∠QOR = 360°
(∠TOP + ∠TOS) + ∠POQ + ∠SOR + ∠QOR = 360°
[∠TOP + ∠TOS = ∠POS]
∠POS + ∠POQ + ∠SOR + ∠QOR = 360°
Hence, ∠POQ + ∠QOR + ∠SOR + ∠POS = 360°
Step-by-step explanation:
Given that
OP, OQ, OR and OS are four rays
You need to produce any of the ray OP, OQ, OR and OS backwards to a point in the figure. Let us produce ray OQ backwards to a point
T so that TOQ is a line
Ray OP stands on the TOQ
∠TOP + ∠POQ = 180° [Linear pair] ………...(1)
Similarly,
∠TOS + ∠SOQ = 180° [Linear pair]
∠TOS + (∠SOR + ∠OQR) = 180° ………. (2)
Adding eq (1) and (2), we obtain :
∠TOP + ∠POQ + ∠TOS + ∠SOR + ∠QOR = 360°
(∠TOP + ∠TOS) + ∠POQ + ∠SOR + ∠QOR = 360°
[∠TOP + ∠TOS = ∠POS]
∠POS + ∠POQ + ∠SOR + ∠QOR = 360°
Hence, ∠POQ + ∠QOR + ∠SOR + ∠POS = 360°