In the given figure, if AB || DC, AO=x+5, BO = x-1, CO = x+3, and DO = x - 2 then find
the value of x
Answers
Answered by
3
Step-by-step explanation:
Given,
ABCDABCD is trapezium where diagonals intersect at OO ,AO=x+5AO=x+5 ,OC=x+3OC=x+3 ,DO=x-2DO=x−2 , BO=x-1BO=x−1 and AB\parallel DCAB∥DC
From figure,
\triangle AOB△AOB and \triangle DOC△DOC
\angle AOB=\angle DOC∠AOB=∠DOC (vertically opposite angle)
\angle OAB=\angle OCD∠OAB=∠OCD (AB\parallel DCAB∥DC and alternate angle)
\angle OBA=\angle ODC∠OBA=∠ODC (AB\parallel DCAB∥DC and alternate angle)
∴ \triangle AOB△AOB ≅\triangle DOC△DOC
So, We can write,
\frac{AO}{OC}=\frac{BO}{OD}
OC
AO
=
OD
BO
Plug the value in above equation,
⇒ \frac{x+5}{x+3}=\frac{x-1}{x-2}
x+3
x+5
=
x−2
x−1
⇒x^{2} -2x+5x-10=x^{2} -x+3x-3x
2
−2x+5x−10=x
2
−x+3x−3
⇒3x-2x=-3+103x−2x=−3+10
⇒x=7x=7
∴ The value of xx is 77
Hope it helps you
Similar questions