In the given figure if AB||DE, ZBAC = 35º and
Z CDE = 53°, find ZDCE.
Answers
Given, AB║DE;
So, ∠BAC = ∠DEC {Alternate Angles}
∠DEC = 35°
In ΔCED;
∠DEC + ∠CDE + ∠DCE = 180° {Angle Sum Property of a Triangle}
35 + 53 + ∠DCE = 180
∠DCE = 180 - 88
∠DCE = 92°
Answer:
AB llDE
Step-by-step explanation:
CED=BAC=35°{alternative interior angles}
CED=BAC=35°{alternative interior angles} In ∆DEC,
CED=BAC=35°{alternative interior angles} In ∆DEC, CDE+CED+DCE=180°
CED=BAC=35°{alternative interior angles} In ∆DEC, CDE+CED+DCE=180° 53°+35°+DCE=180°
CED=BAC=35°{alternative interior angles} In ∆DEC, CDE+CED+DCE=180° 53°+35°+DCE=180° 88°+DCE=180°
CED=BAC=35°{alternative interior angles} In ∆DEC, CDE+CED+DCE=180° 53°+35°+DCE=180° 88°+DCE=180°DCE=180°-88°
CED=BAC=35°{alternative interior angles} In ∆DEC, CDE+CED+DCE=180° 53°+35°+DCE=180° 88°+DCE=180°DCE=180°-88°DCE=92°