Math, asked by DharamveerMehra, 4 months ago

In the given figure, if AT is a tangent to the circles with centre O, such that OT=4cm

and ‹OTA=300, then find the length of AT (in cm)​

Answers

Answered by DILhunterBOYayus
26

\sf{\bold{\blue{\underline{\underline{Given}}}}}

AT is tangent to the circle with centre "O".

OT=4cm.

\tt{\angle{OTA}=30°}⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

¤ \tt{Value~ of ~AT}? ¤⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

Here,

in \triangle{OAT},OA ⊥ AT 

So,

\angle{OTA}=90° 

\therefore \triangle{OAT} is a right angle triangle.

And, \tt{\angle{OTA}=30°},OT=4cm.

Thus,

\boxed{\orange{Cos\theta=\dfrac{Base}{Hypothesize}}} 

\rightsquigarrow :\tt{cos\angle{OTA}=\dfrac{AT}{OT}} 

\rightsquigarrow :\tt{cos30°=\dfrac{AT}{OT}}

\rightsquigarrow :\tt{\dfrac{\sqrt{3}}{2}=\dfrac{AT}{OT}}

\rightsquigarrow :\tt{\dfrac{\sqrt{3}}{2}=\dfrac{AT}{4}} (\because{AT=4})

\rightsquigarrow :\tt{AT=\dfrac{\sqrt{3}}{2}×4 }

\rightsquigarrow :\tt{AT=\dfrac{\sqrt{3}}{\cancel{2}}×\cancel{4}}

\rightsquigarrow :\tt{AT=2\sqrt{3}} 

⠀⠀

⠀⠀⠀⠀

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

\therefore Value of \pink{\underline{AT=2\sqrt{3}}} 

Attachments:
Answered by iamohdzaid
1

Step-by-step explanation:

refre the photo for answer

Attachments:
Similar questions