In the given figure, if CD = 17 m, BD= 8 m and AD=4 m, find the value of AC.
Attachments:
Answers
Answered by
16
Given: A triangle with CD = 17 m, BD= 8 m and AD=4 m
To find: The value of AC?
Solution:
- Now we have given that B is right angled.
- Using pythagoras theorem, we get:
BC² + BD² = DC²
BC² = DC² - BD²
BC² = 17² - 8²
BC² = 289 - 64
BC² = 225
BC = 15 m
- Now again using pythagoras theorem, we get:
AB² + BC² = AC²
(AD + DB)² + BC² = AC²
(4+8)² + 15² = AC²
AC² = 12² + 15²
AC² = 144 + 225
AC² = 369
AC = √369 = 19.20 m
Answer:
So the value of AC is 19.20 m.
Similar questions