In the given figure, if EF = QR then the congruence rule used for the congruency of the given triangles is: .
Answers
Answer:
Two triangles are said to be congruent if all their three sides and three angles are equal. But it is necessary to find all six dimensions. Hence, the congruence of triangles can be evaluated by knowing only three values out of six. Also, learn about Congruent Figures here.
Congruence is the term used to define an object and its mirror image. Two objects or shapes are said to be congruent if they superimpose on each other. Their shape and dimensions are the same. In the case of geometric figures, line segments with the same length are congruent and angle with the same measure are congruent.
Conditions for Congruence of Triangles:
SSS (Side-Side-Side)
SAS (Side-Angle-Side)
ASA (Angle-Side-Angle)
AAS (Angle-Angle-Side)
RHS (Right angle-Hypotenuse-Side)
CPCT is the term, we come across when we learn about the congruent triangle. Let’s see the condition for triangles to be congruent with proof.
Similarity of Triangles
Congruence Rhs Sss
Congruence of Triangles Class 7
Congruence of Triangles Class 9
Congruent Triangles
A polygon made of three line segments forming three angles is known as Triangle.
Two triangles are said to be congruent if their sides have the same length and angles have same measure. Thus two triangles can be superimposed side to side and angle to angle.
Congruence Of Triangles
In the above figure, Δ ABC and Δ PQR are congruent triangles. This means,
Vertices: A and P, B and Q, and C and R are same.
Sides: AB=PQ, QR= BC and AC=PR;
Angles: ∠A = ∠P, ∠B = ∠Q, and ∠C = ∠R.
Congruent triangles are triangles having corresponding sides and angles to be equal. Congruence is denoted by the symbol ≅. They have the same area and the same perimeter.
CPCT Rules in Maths
The full form of CPCT is Corresponding parts of Congruent triangles. Congruency can be predicted without actually measuring the sides and angles of a triangle. Different rules of congruency are as follows.
SSS (Side-Side-Side)
SAS (Side-Angle-Side)
ASA (Angle-Side-Angle)
AAS (Angle-Angle-Side)
RHS (Right angle-Hypotenuse-Side)
Let us learn them all in detail.
SSS (Side-Side-Side)
If all the three sides of one triangle are equivalent to the corresponding three sides of the second triangle, then the two triangles are said to be congruent by SSS rule.
SSS-Congruence Of Triangles
In the above-given figure, AB= PQ, QR= BC and AC=PR, hence Δ ABC ≅ Δ PQR.
SAS (Side-Angle-Side)
If any two sides and angle included between the sides of one triangle are equivalent to the corresponding two sides and the angle between the sides of the second triangle, then the two triangles are said to be congruent by SAS rule.
SAS-Congruence Of Triangles
In above given figure, sides AB= PQ, AC=PR and angle between AC and AB equal to angle between PR and PQ i.e. ∠A = ∠P. Hence, Δ ABC ≅ Δ PQR.
ASA (Angle-Side- Angle)
If any two angles and side included between the angles of one triangle are equivalent to the corresponding two angles and side included between the angles of the second triangle, then the two triangles are said to be congruent by ASA rule.
ASA-Congruence Of Triangles
In above given figure, ∠ B = ∠ Q, ∠ C = ∠ R and sides between ∠B and ∠C , ∠Q and ∠ R are equal to each other i.e. BC= QR. Hence, Δ ABC ≅ Δ PQR.
AAS (Angle-Angle-Side)
AAS stands for Angle-angle-side. When two angles and a non-included side of a triangle are equal to the corresponding angles and sides of another triangle, then the triangles are said to be congruent.
Students sometime may get confused AAS with ASA congruency. But remember that AAS is for non-included side whereas ASA is for included sides of the triangles.
If there are two triangles say ABC and DEF, then as per AAS rule:
∠B = ∠E
∠C = ∠F
AB = DE
Hence,
Δ ABC ≅ Δ DEF
RHS (Right angle- Hypotenuse-Side)
If the hypotenuse and a side of a right- angled triangle is equivalent to the hypotenuse and a side of the second right- angled triangle, then the two right triangles are said to be congruent by RHS rule.
RHS-Congruence Of Triangles
In above figure, hypotenuse XZ = RT and side YZ=ST, hence triangle XYZ ≅ triangle RST.
Solved Example
Let’s Work Out:
Example: In the following figure, AB = BC and AD = CD. Show that BD bisects AC at right angles.
Congruence of Triangle Example
Solution: We are required to prove ∠BEA = ∠BEC = 90° and AE = EC.
Consider ∆ABD and ∆CBD,
AB = BC (Given)
AD = CD (Given)
BD = BD (Common)
Therefore, ∆ABD ≅ ∆CBD (By SSS congruency)
∠ABD = ∠CBD (CPCTC)
Now, consider ∆ABE and ∆CBE,
AB = BC (Given)
∠ABD = ∠CBD (Proved above)
BE = BE (Common)
Therefore, ∆ABE≅ ∆CBE (By SAS congruency)
∠BEA = ∠BEC (CPCTC)
And ∠BEA +∠BEC = 180° (Linear pair)
2∠BEA = 180° (∠BEA = ∠BEC)
∠BEA = 180°/2 = 90° = ∠BEC
AE = EC (CPCTC)
Hence, BD is perpendicular bisector of AC.
please mark me as brain list
Answer:
r auction rock fiction anchovy rock encourage Rico