Math, asked by sweta567, 5 months ago

In the given figure, if lines PQ and RS intersect at point T, such that ∠PRT = 40º, ∠RPT = 95º and ∠TSQ = 75º, find ∠SQT.

​​

Attachments:

Answers

Answered by Anonymous
69

Given:

  • PQ and RS intersect at point T.
  • ∠PRT = 40°, ∠RPT = 90° and ∠TSQ = 75°.

To Find:

  • ∠SQT

Solution:

Using angle sum property for ΔPRT, we obtain

→ ∠PRT + ∠RPT + ∠PTR = 180º

→ 40º + 95º + ∠PTR = 180º

→ ∠PTR = 180º − 135º

→ ∠PTR = 45º

→ ∠STQ = ∠PTR = 45º (Vertically opposite angles)

→ ∠STQ = 45º

By using angle sum property for ΔSTQ, we obtain

→ ∠STQ + ∠SQT + ∠QST = 180º

→ 45º + ∠SQT + 75º = 180º

→ ∠SQT = 180º − 120º

→ ∠SQT = 60º

Hence,

  • ∠SQT = 60º
Similar questions