Math, asked by Bensolo, 8 months ago

In the given figure, if OP stands on the line QR
such that angle POR: angle QOP = 4:5, show that angle QOP - angle POR = 1/2 angle QOR.

Attachments:

Answers

Answered by tanejakca
3
See the photo attached for solution
Attachments:
Answered by mysticd
8

 \angle { POR} : \angle {QOP} = 4 : 5

 Let \: \angle { POR} = 4x

 and \: \angle { QOP} = 5x

/* We know that */

 \angle { POR} + \angle { QOP} = 180\degree

 \blue{ ( Linear \: pair ) }

 \implies 4x + 5x = 180

 \implies 9x = 180

 \implies x = \frac{180}{9}

 \implies x = 20 \: --(1)

 LHS= \red{ \angle { QOP} - \angle { POR} }

 = 5x - 4x

 = x

 = 20

 RHS = \frac{\angle { QOR}}{2}

 = \frac{ \angle { POR} + \angle { QOP}}{2}

 = \frac{180}{2}

 = 90\degree

Therefore.,

 LHS \neq RHS

•••♪

Similar questions