Math, asked by lakshyas8c, 9 hours ago

In the given figure, if∠P= 25°,andPS=ST=QT=QR then the measure of ∠R is

Attachments:

Answers

Answered by amirsharaf834
3

Answer:

130

Step-by-step explanation:

because P is 25 so Q is also 25

a triangle has 180 so 180-50 is 130

Answered by sangram0111
6

Given:

In the given figure, if ∠P= 25°,andPS=ST=QT=QR then the measure of ∠R is?

Solution:

Know that the angle opposite to the equal sides are equal.

Refer the question figure,

Take triangle PST,

PS=ST   (given)

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiiIaTaam% 4uaiaadcfacaWGubGaeyypa0JaeyiiIaTaamiuaiaadsfacaWGtbaa% aa!3F44!\[\angle SPT = \angle PTS\] (angle opposite to the equal side)

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiiIaTaam% 4uaiaadcfacaWGubGaeyypa0JaaGOmaiaaiwdadaahaaWcbeqaaiab% lIHiVbaaaaa!3E02!\[\angle SPT = {25^ \circ }\] (given)

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyinIWLaey% iiIaTaamiuaiaadsfacaWGtbGaeyypa0JaaGOmaiaaiwdacqGHWcaS% aaa!3FC5!\[\therefore \angle PTS = 25^\circ \]

Evaluate % MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiiIaTaam% iuaiaadofacaWGubaaaa!3A1A!\[\angle PST\],

\[\begin{array}{l} \Rightarrow \angle PST = 180^\circ  - 25^\circ  - 25^\circ \\ \Rightarrow \angle PST = 130^\circ \end{array}\]

Take triangle STQ,

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taey% iiIaTaamyuaiaadofacaWGubGaeyypa0JaaGymaiaaiIdacaaIWaGa% eyiSaaRaeyOeI0IaaGymaiaaiodacaaIWaGaeyiSaalaaa!46AC!\[ \Rightarrow \angle QST = 180^\circ  - 130^\circ \]

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taey% iiIaTaamyuaiaadofacaWGubGaeyypa0JaaGynaiaaicdacqGHWcaS% aaa!40E3!\[ \Rightarrow \angle QST = 50^\circ \]

% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSynIeLaam% 4uaiaadsfacqGH9aqpcaWGrbGaamivaaaa!3B95!\[ST = QT\] (given)

\[\begin{array}{l}\therefore \angle QST = \angle SQT\\\therefore \angle SQT = 50^\circ \end{array}\]

Evaluate % MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiiIaTaam% 4uaiaadsfacaWGrbaaaa!3A1B!\[\angle STQ\],

\[\begin{array}{l} \Rightarrow \angle STQ = 180^\circ  - 50^\circ  - 50^\circ \\ \Rightarrow \angle STQ = 80^\circ \end{array}\]

Take triangle QTR,

\[\begin{array}{l} \Rightarrow \angle QTR = 180^\circ  - 80^\circ  - 25^\circ \\ \Rightarrow \angle QTR = 75^\circ \end{array}\]

Since, % MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSynIeLaam% yuaiaadsfacqGH9aqpcaWGrbGaamOuaaaa!3B91!\[QT = QR\] (given)

\[\begin{array}{l}\therefore \angle QRT = \angle QTR\\\therefore \angle QRT = 75^\circ \end{array}\]

Hence, the measure of % MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiiIaTaam% Ouaiabg2da9iaaiEdacaaI1aGaeyiSaalaaa!3CDD!\[\angle R = 75^\circ \].

Similar questions