In the given figure, if PQ 1 PS, PQ || SR, Z SQR = 28 ° and Z QRT = 65 °, then find the values
Answers
Answered by
2
Answer:
In △QSR, we have
∠QRT=∠RSQ+∠SQR ....(Exterior angle of triangle is equal t sum of interior opposite angles)
⇒65∘=∠RSQ+28∘
⇒∠RSQ=65∘−28∘
⇒∠RSQ=37∘
We have y∘+∠RSQ=90∘ ....(Given)
⇒y+37∘=90∘
⇒y=90∘−37∘=53∘
In △PQS, we have
x∘+y∘+∠P=180∘ ....(Angle sum property)
⇒x+53∘+90∘=180∘
⇒x=180∘−143∘=37∘
Answered by
0
Answer:
In △QSR, we have
∠QRT=∠RSQ+∠SQR ....(Exterior angle of triangle is equal t sum of interior opposite angles)
⇒65∘=∠RSQ+28∘
⇒∠RSQ=65∘−28∘
⇒∠RSQ=37∘
We have y∘+∠RSQ=90∘ ....(Given)
⇒y+37∘=90∘
⇒y=90∘−37∘=53∘
In △PQS, we have
x∘+y∘+∠P=180∘ ....(Angle sum property)
⇒x+53∘+90∘=180∘
⇒x=180∘−143∘=37∘
Similar questions