Math, asked by Naimitha, 1 year ago

In the given figure if PQ perpendicular PS. PQ||SR, angle SQR=28 and angle QRT=65, then find the values. of x and y

Attachments:

Answers

Answered by MidA
20
x = 37°, y = 53°
angle PQR = angle QRT. ( alternate interior angles)
so, x = 65° - 28° = 37°
angle PSR = 90° = y + x
so, y = 90 - 37° = 53°
Attachments:
Answered by Anonymous
19

Hello mate ☺

____________________________

Solution-

It is given that PQ∥SR. Therefore, ∠QRT=∠PQR              (Alternate Interior Angles)

⇒65°=x+28°

⇒x=65°−28°=37°

In ∆PQS, we have

x+y+∠SPQ=180°       (Sum of three angles of a triangle =180°)

⇒37°+y+90°=180°        ( It is given that ∠SPQ=90°)

⇒y=180°-37°−90°=53°

Therefore, x=37° and y=53°

I hope, this will help you.☺

Thank you______❤

_____________________________❤

Similar questions