Math, asked by thebrainliestaditya, 1 year ago

in the given figure if x+y = w+z

the prove that AOB is a line​

Attachments:

Answers

Answered by Anonymous
12

\huge\bigstar\underline\mathfrak\pink{Explanation}

\large\underline\bold\blue{Given-}

x + y = w + z

\large\underline\bold\blue{To\:prove-}

AOB is a straight line.

\large\underline\bold\blue{proof-}

We know that,

Angle w + Angle x + Angle y + Angle z = 360° [ complete angle ]________(i)

Also,

x + y = w + z ( given )

Now, put x + y = w + z in eq (i).

We get,

Angle x + Angle y + Angle x + Angle y = 360°

2 Angle x + 2 Angle y = 360°

2 ( Angle x + Angle y ) = 360°

Angle x + Angle y = 360°\2

Angle x + Angle y = 180°

_________________________

Now,

The two angles forms linear pair with the sum of 180°.

Hence, AOB is a straight line.

Answered by sethrollins13
2

✯✯ QUESTION ✯✯

In the given Figure if x+y = w+z

The Prove that AOB is a line ..

✰✰ ANSWER ✰✰

\longmapsto\tt{Given:.x+y=w+z}

\longmapsto\tt{To prove:.AOB\:is\:a\:line}

Proof : -

\longmapsto\tt{x+y+z+w=360\degree....(Complete\:Angle)}

\longmapsto\tt{w+z+z+w=360\degree}

\longmapsto\tt{2w+2z=360\degree}

\longmapsto\tt{2(w+z)=360\degree}

\longmapsto\tt{w+z=\cancel\dfrac{360}{2}}

\longmapsto\tt{w+z=180\degree}

HENCE PROVED

Attachments:
Similar questions