Math, asked by Anonymous, 1 month ago

In the given figure is a 10 by 10 grid. By using concept of permutations and combinations find the number of possible rectangles in the figure.​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

As it is provided a grid of 10 by 10

It means there are 11 vertical lines and 11 horizontal lines.

In order to form a rectangle of any size, we need two vertical lines and 2 horizontal lines.

Now, we have given 11 vertical lines.

So, Number of ways in which 2 vertical lines can be selected from 11 vwrtical lines is

\rm \:  =  \:  \: ^{11}C_2

\rm \:  =  \:  \: \dfrac{11!}{2! \: (11 - 2)!}

\rm \:  =  \:  \: \dfrac{11!}{2! \: 9!}

\rm \:  =  \:  \: \dfrac{11 \times 10 \times 9!}{2 \times 1 \times  \: 9!}

\rm \:  =  \:  \: 55

Now, we have 11 horizontal lines.

So,

Number of ways in which 2 horizontal lines can be selected from 11 horizontal lines is

\rm \:  =  \:  \: ^{11}C_2

\rm \:  =  \:  \: \dfrac{11!}{2! \: (11 - 2)!}

\rm \:  =  \:  \: \dfrac{11!}{2! \: 9!}

\rm \:  =  \:  \: \dfrac{11 \times 10 \times 9!}{2 \times 1 \times  \: 9!}

\rm \:  =  \:  \: 55

Hence,

Total number of possible rectangles in the figure is

\rm \:  =  \:  \: ^{11}C_2 \:  \times  \: ^{11}C_2

\rm \:  =  \:  \: 55 \times 55

\rm \:  =  \:  \: 3025

Formula Used :-

\boxed{ \rm{ \: ^{n}C_r \:  =  \:  \frac{n!}{r! \: ( \: n \:  -  \: r \: )!}}}

Additional Information :-

Short cut tricks

If we have a grid of n × n, then

\boxed{ \rm{ Number \: of \: squares \:  =  \:  \sum_{r = 1}^n \: {r}^{2}  = \dfrac{n(n + 1)(2n + 1)}{6} }}

\boxed{ \rm{ Number \: of \: rectangles \:  =  \:  \sum_{r = 1}^n \: {r}^{3}  = \dfrac{ {n}^{2} {(n + 1)}^{2} }{4} }}

Similar questions